
COMPARING
MANAGED
PACKAGE
GENERATIONS

The changes, similarities, and technical
nuances of salesforce's second-generation
managed packages.

Post Date:

Author: Bohdan Dovhan

Categories: Salesforce

Keywords: SFDX, CI, 2GMP, ISV, AppExchange,
Managed Package, Second Generation, DevOps

Whitepaper Comparing Managed Package Generations 2

Managed packages are the vehicle that
Salesforce partners use to build, share,

or sell applications to customers on Sales-
force's AppExchange.

Over the last year, Salesforce ushered in a
new way for partners to develop, distribute,
and manage apps and metadata with a sec-
ond-generation managed packaging or 2GMP.

This new generation streamlines and simpli-
fies elements such as organizing your source,
crafting smaller modular packages, and inte-
grating with your version control system. It's
heavily dependent on the Salesforce Devel-
oper Experience (SFDX) command-line inter-

face (CLI), meaning your packaging operations
can now be handled with these data and
metadata management tools. These features
can also be automated using scripts, freeing
up innovation and iteration by developers to
drive even greater business success.

Are you ready to accelerate your developer
team's collaboration, enable source-driven
development, and reach new heights of busi-
ness agility? Then read on as we highlight the
differences and similarities between the two
managed package generations. I'll follow it
with a deep dive into some technical nuances
and commonly asked questions about 2GMP.

While some features remain the same, there are crucial differences between the first- and
second-generation managed packages.

The first key difference is their source of truth.

For first-generation managed packages
(1GMP), the source of truth is the packaging
organization (known as the “packaging org”)
or the patch organization (known as the
"patch org").

When a developer signs up for a new devel-
oper edition organization, they will start build-
ing a package specifically within this packag-
ing org.

Whenever a new package version is uploaded,
it collects the source code from the developer
edition and embeds it in the package.

For second-generation managed packages
(2GMP), there is no patch org or packaging
org. Instead, the source of truth for 2GMP is
the version control system (VCS). Every com-
ponent committed and pushed to the VCS is
included in the package version. Every com-
ponent committed and pushed to the VCS is
included in the package version.

1. What is the source of truth?

INTRODUCTION

DIFFERENCES BETWEEN FIRST- AND SECOND-
GENERATION MANAGED PACKAGES

Whitepaper Comparing Managed Package Generations 3

The answer is simple for 1GMP—the packag-
ing org is the owner of both the package and
its metadata.

However, for 2GMP, things aren't as easy.

The metadata here resides in the VCS, but the
package itself is owned by the developer hub
organization or dev hub org.

This dev hub org is the home of all the pack-
ages you want to develop from a single orga-
nization. It's also the hub for all the scratch
orgs, which are source-driven, temporary, and
disposable organizations.

Scratch orgs are useful for continuous inte-
gration and continuous delivery (CI/CD). They
can be easily created and then discarded with
a command-line script, allowing for greater
flexibility.

In 1GMP, the packaging org is the owner of
both the package and its metadata. For 2GMP,
the VCS owns the metadata while the dev hub
org owns the package.

3. How many packages may
belong to an org?

Only one first-generation managed package
may be created in the packaging org.

However, the dev hub can own many sec-
ond-generation managed packages.

For 1GMP, the namespace is registered in the
packaging org.

While there's no packaging org concept for
2GMP, there is concept of the namespace org.
This is where you first register a namespace.
Then you link that namespace org to your dev
hub.

5. How many packages can share
namespace?

Multiple 2GMPs can share the same name-
space, while only a single 1GMP can do the
same.

2. Who is the owner of the
package and its metadata?

4. Where is the namespace (the
prefix used by managed packages
to isolate the metadata scope)
registered?

Whitepaper Comparing Managed Package Generations 4

The only way to share the code with other
packages or subscribers in 1GMP is by using
the global access modifier keyword.

While you can still use the global access mod-
ifier in 2GMP, you also have another option.
You can use the annotation @namespaceAc-
cessible. It will share the code to the packages
that use the namespace but hide it from the
subscribers, making it more agile.

7. Can package:create or uninstall
be automated?

Automation for all operations by SFDX CLI
comes standard for 2GMP.

Unfortunately, 1GMP doesn't allow certain
operations such as create or uninstall to be
automated.

8. Is branching supported in
package versioning?

For 2GMP, the answer is easy: yes, it supports
branching.

However, 1GMP does not, as its packaging
versioning is linear. That means that while
you're developing an app, you can release a
version 1.0 followed by releasing version 1.1.
You can then follow that up with a version 2.0.

However, once you release a version 2.0, you
can no longer release a version 1.2 in 1GMP.

In 1GMP, patch versions can be created from a
patch org. These are dedicated environments
that contain the code and metadata for a spe-
cific patch version.

Since there's no patch org concept in 2GMP,
their patch versions can be created only from
SFDX CLI.

Salesforce released this second generation to
eliminate much of the complexity developers
previously encountered when working with
multiple Salesforce orgs. Making it easier to
build apps and packages meant that Salesforce
partners could increase innovation.

6. What are the options
to share code?

9. Can patch versions
be created?

Whitepaper Comparing Managed Package Generations 5

Though it's important to highlight these dif-
ferences and improvements, there remain

numerous similarities between first- and sec-
ond-generation managed packages.

These similarities center around what both
generations of managed packages allow an
independent software vendor, or ISV, to do.

First, both generations allow ISVs to iterate
and create package and patch versions and
install and uninstall packages in subscriber
orgs.

Next, you can easily list your package on
AppExchange, no matter which generation
you use. AppExchange is the Salesforce Mar-
ketplace where packages can be published by
ISVs or found by users for installation.

You can list your package on AppExchange
with both generations. You also can submit
your package for the AppExchange security
review. The Salesforce security team conducts
this rigorous four-to-six-week process before
listing the product so that customers using
AppExchange can be confident that their data
is protected.

The third similarity between the 1GMP and
2GMP is that both allow you to utilize the
License Management App. This lets you con-
trol the licenses available for customers. This
feature doesn't apply to apps listed for free
or which have an installation fee, but it's a
critical tool for others.

With the License Management App, you can
track the number of customer installations
and the package version installed. One of the
most significant benefits is that you're able to
manage the leads for each license.

The License Management App benefits your
customers as well since it houses the Sub-
scriber Support Console. This feature lets you
gain permission from your customer before
logging into their org to troubleshoot any
issues.

Lastly, both 1GMP and 2GMP support using
the Feature Management App. In this app,
you're able to define which customers have
access to your application's parameters.

All these features available in 1GMP and
2GMP make both generations more usable
and easily accessible to meet developer
needs.

SIMILARITIES BETWEEN FIRST- AND SECOND-
GENERATION MANAGED PACKAGES

Whitepaper Comparing Managed Package Generations 6

While both generations share differences and similarities, some technical nuances for
2GMP have created developer questions. Let's explore some of them.

One of the biggest developer questions—and one that I asked at a conference—is whether
1GMP and 2GMP can share a namespace.

The conference moderators said no, and that is technically true. You cannot install both 1GMP
and 2GMP with a shared namespace into the same org,

If you try to do so, it will send an error stating that the package you're trying to install has the
same namespace as another package already installed in the target org.

But while they both cannot be installed to the same org, the first one can be installed into
one org, and another one can installed into another org.

If a developer owns a namespace, some of his or her customers might use a 1GMP with a
given namespace, while the others might use 2GMP having the same namespace. However,
none of the customers may use both on the same org.

Overall, it is possible for a customer to have multiple orgs and they can use one package on
one org and another package on another org.

Problem:
1. Package namespace conflict
The package you're trying to install has the same namespace as another package that's already installed in the
target org.

1. Can both generations share a namespace?

TECHNICAL NUANCES AND FAQ FOR 2GMP

Whitepaper Comparing Managed Package Generations 7

Developers can use the sfdx:force:package:install command to install both 1GP (unmanaged
packages) or 1GMP (classic managed packages) into an org. However, you cannot use the
sfdx:force:package:uninstall command to uninstall that same 1GP or 1GMP.

If you try to uninstall a first-generation package this way, you will get the following error:

Salesforce's documentation states this command will only uninstall a 2GMP or unlocked pack-
ages from the target org.

To uninstall a first-generation package, a developer must use the Salesforce user interface.

2. When can you use package install or uninstall commands?

This feature is meant to push package
upgrades to subscribers without their explicit
consent.

Many in the industry don't believe it possible
to schedule push upgrades for 2GMP. This
appears incorrect. While you can't schedule
the push upgrade for 2GMP using the Sales-
force UI, you can still schedule it using SOAP
API.

Salesforce provides a helpful cheat sheet that
lists which metadata components are sup-
ported by the different package generations. It
ranges from support by only 1GMP, only 2GMP,
by both, or by neither.

3. Can you
push upgrades?

4. Which metadata components
does each generation support?

Whitepaper Comparing Managed Package Generations 8

It's important to note that namespace registration and dev hub are incompatible features.
You cannot enable dev hub in the namespaced org. Nor can you create 1GMP in the dev hub.

The Salesforce documentation clearly states:

In 2GMP, you must link your namespaced org to your dev hub. If you don't, you'll get an error
saying that the dev hub does not own the specified namespace.

It prevents just anyone from creating packages for a company to which they don't belong.
For example, unless someone belongs to the Financial Force company, they couldn't create
a package with the namespace fforce.

You must prove that the namespace you are trying to use belongs to you by linking your
namespace org to the dev hub.

You will receive the following warning if you try:

5. What about namespace registration and dev hub compatibility?

Whitepaper Comparing Managed Package Generations 9

Some developers have dealt with the failure
of the SFDX CLI command they are using to
create a new package version. A new package
will occasionally fail to be created because
the system says it exceeds the limit of Pack-
age2VersionCreates.

But, what if you urgently need to create a new
version for a client anyways?

The solution is to include the --skipvalidation
switch in the SFDX CLI command.

This switch skips validation during package
version creation. While you can't promote
unvalidated package versions, they have a
significantly higher limit than the validated
version.

The value of Package2VersionCreatesWith-
outValidation is 500, while the value of Pack-
age2VersionCreates is 6. By including the
--skipvalidation switch in the SFDX CLI com-
mand, developers can create a new version
for a client that avoids the package version
creates limit.

Two common errors that arise are:

1. ERROR running force:package:install:
Mismatching versions

This occurs when the subscriber org is on
the Winter 21 release, while the package
version is built with sfdx-project.json spec-
ifying version 51.

Version 51 is the Spring 21 release.

The story's moral is never to use the pre-
view version until it is available on all your
destination orgs.

2. ERROR running
force:package:version:create: No
matching source was found within
the package root directory

This error arises because the specified
source directory is empty. There can
be numerous causes for this, such as
you copying your source to the wrong
directory. You will want to go back and
ensure that the correct source directory
is named.

6. What are the package
version limits?

7. What's behind these two
common causes of errors

Whitepaper Comparing Managed Package Generations 10

You should know that not only is it possible
to link the same namespace in several dev
hubs, but it's also possible to link several
namespaces in one dev hub.

9. Is it possible to create packages
in deleted or expired dev hubs?

Another question that developers have asked
is that once the dev hub trial org is deleted or
expires, is it possible to create new package
versions?

The Salesforce documentation suggests the
answer is no. Once a dev hub is deleted or
expires, its packages no longer work.

This is one of the most exciting developer ques-
tions, and the answer is yes.

You'll use the command subscriberPackageVer-
sionId to define a dependency, whether it's on
the:

•	 first-generation	managed	package	

• the second-generation package from
another dev hub

• the second-generation unlocked
package

8. Can you link dev hubs
and namespaces?

10. Can a 2GMP Package
dependency be defined to depend
on a 1GMP or a package owned by
a different dev hub?

Salesforce's second-generation managed packages allow for even more partner innovation
as they develop, distribute, and manage their apps.

Explaining the differences and similarities between the two managed package generations,
their technical nuances, and commonly asked questions highlight the many ways that man-
aged packages can build business success.

LET'S TALK if you're ready to accelerate your developer team's collaboration, enable source-
driven development, and reach new heights of business agility with Salesforce.

CONCLUSION

https://www.softserveinc.com/en-us/contact

ABOUT US
SoftServe is a digital authority that advises and provides at the cutting-edge of
technology. We reveal, transform, accelerate, and optimize the way enterprises
and software companies do business. With expertise across healthcare, retail,
energy, financial services, and more, we implement end-to-end solutions to
deliver the innovation, quality, and speed that our clients’ users expect.

SoftServe delivers open innovation, from generating compelling new ideas,
to developing and implementing transformational products and services.

Our work and client experience is built on a foundation of empathetic,
human-focused experience design that ensures continuity from concept to
release.

We empower enterprises and software companies to (re)identify differenti-
ation, accelerate solution development, and vigorously compete in today’s
digital economy-no matter where you are in your journey.

Visit our website, blog, LinkedIn, Facebook, and Twitter pages.

NORTH AMERICAN HQ

201 W 5th Street, Suite 1550
Austin, TX 78701 USA
+1 866 687 3588 (USA)
+1 647 948 7638 (Canada)

EUROPEAN HQ

30 Cannon Street
London EC4M 6XH
United Kingdom
+44 333 006 4341

APAC HQ

6 Raffles Quay
#14-07
Singapore 048580
+65 31 656 887

info@softserveinc.com
www.softserveinc.com

https://www.softserveinc.com/en-us
https://www.softserveinc.com/en-us/blog
https://www.linkedin.com/company/softserve/
https://www.facebook.com/SoftServeInc
https://twitter.com/SoftServeInc

