RUNNING
SALESFORCE
APPLICATIONS
ON ELECTRON

A detailed guide to running salesforce
applications on electron

Authors: Vitalii Siukaiev
Categories: Salesforce
Keywords: SFDX, DevOps

Author Bio: Vitalii Siukaiev is a certified senior
Salesforce developer at SoftServe. Vitalii has five
years of experience with Salesforce and eight years
of experience in web development. He is passionate
about technical innovations and further developing

his programming skills. SOftserve

INTRODUCTION

Since it's possible to build standalone web

applications based on web components, it's
a good idea to use this to your advantage.

One framework that works well with
Salesforce applications is Electron.

This framework was developed and is
maintained by GitHub. Electron combines
the Chromium rendering engine and

the Node.js runtime. It allows users

to create desktop applications using

just HTML, CSS, and JavaScript.

Running Salesforce applications on
Electron is beneficial for several reasons.
Because Electron uses Node.js, you gain
all of the benefits it brings to the table.

It means you can learn more about the
user’s local environment, which Salesforce
applications cannot do independently.

For example, you will have the ability to
send information to the user’s printer.

Utilizing Electron’s framework also means
you can also build offline applications
compatible with Linux, Windows, and
macOS and can sync with Salesforce
when needed. These benefits and many
others make Electron a strong choice for
building your Salesforce applications.

Here we will walk through each step
of using Electron to access Salesforce
data and then render it using
Lightning Web Components locally.

e

Electron App

LWC

Nodejs
(express server)

Salesforce
Data

Whitepaper Running Salesforce Applications On Electron 2

https://developer.salesforce.com/blogs/2020/12/build-connected-apps-anywhere-using-lightning-base-components.html
https://developer.salesforce.com/blogs/2020/12/build-connected-apps-anywhere-using-lightning-base-components.html

PLANNING ELEMENTS

The key components needed to run
Salesforce applications on Electron are the
Electron framework, NodeJS, expressServer,
the lwc basic components bundle, and
JSForce to connect the framework to

the organization and access the data.

You must have a basic knowledge of
Nodejs and express js to undertake this
process. You'll also need to know how
to handle Lightning Web Components.
If you can do those things, then you'll
be able to follow our step-by-step plan
for building Salesforce applications
using the Electron Framework.
Step-by-Step Plan

+ Step 1: Create Salesforce Connected app

Step 2: Install LWC Basic Components
bundle

Step 3: Install Electron
+ Step 4: The Application
« Step 5: Create Accounts LWC component

+ Step 6: Update Account record in
Salesforce from Electron app

The commits for this plan are al<n availahle
in this GitHub repository for y«

STEP 1: CREATE SALESFORCE
CONNECTED APP

Before we can start using Electron, we

first need to log in to our Salesforce

org and create a connected app.

Here is how you do that:

* Navigate to Setup » App Manager

+ Create New Connected App

* You can then use the following
information for the corresponding

requests:

1. Connected App Name: Electron
Local

2. APl Name: Electron_Local
3. Email: [Use your email address]

4. Enable OAuth Settings: [Check this
box]

5. Callback URL: http://localhost:3002/
oauth2/callback

6. Selected OAuth Scopes: [Provide
full access]

Q|

Whitepaper Running Salesforce Applications On Electron

https://github.com/SoftServeSalesforce/electron-lwc-demo/
http://localhost:3002/oauth2/callback
http://localhost:3002/oauth2/callback

At the end of this, it should look
similar to the image below.

Whitepaper Running Salesforce Applications On Electron

Next, you'll need to click Save
and click the Manage button. You
should then select Edit Policies.

After that, you will need to update the IP
Relaxation setting to: Relax IP restrictions.

Don't forget to save this
part by clicking save.

Now you will have the connected
app to use to connect to your org.

If you want to copy the consumer key and
secret for future use, here’s the path:

Navigate to App Mar

your connected app,
Consumer Key and ~

ﬁ Y |

Whitepaper Running Salesforce Applications On Electron 5

STEP 2: INSTALL LWC BASIC
COMPONENTS BUNDLE

To begin this next step, you will need to
create a project folder called electron-lwc-
demo. This is where you will install and
configure the LWC components bundle.

You should then run this
command in the terminal:

npx create-lwc-app electron-lwc-demo

Put'y’ as the option for simple setup and
basic express server configuration.

Next, navigate to the electron-lwc-
demo and run the following command:

npm run watch

This command runs Express Server
and the LWC components app. If you
navigate to http://localhost:3001 in
your browser, you will see this page:

One thing to keep in mind is that
the LWC components and Express
Server run at different endpoints.

The LWC runs at http://localhost:3001, and
ExpressJs runs at http:/localhost:3002.

The proxy configuration stored in
Iwc-services.config.js handles
how LWC components connect
to the Express)S server.

Once you've done this, you need to install
the lightning-base-components package.

First, navigate to the electron-
demo-app folder and run this
command in the terminal:

npm install lightning-base-components

After this components package is installed,
we then need to update the LWC module
resolver config file. This is important
because it tells the module resolver where
to look for our web components and

then correctly resolve dependencies.

Whitepaper Running Salesforce Applications On Electron

http://localhost:3001
http://localhost:3002

In the root of this project, we You're almost done with this step. The

currently have lwec.config.json. You last important thing to accomplish

want to update it with this code: is to update src/client/index.js by
using the following command:

{ import '‘@lwc/synthetic-shadow’;
"npm*: "lightning-base-components" This synthetic shadow exposes the
} DOM structure of the Lightning Web

Components. From here, you can add styles
to components and create your own look.

After that, you then need to install SLDS
resources package. Installing this package

will ensure the components look exactly NOTE: At this moment, the Lightning
as they appear in the Lightning interface. Web Components bundle is still
relatively raw and buggy. To make
Luckily, this is as simple as running it work, you may need to go to the
one command line in our terminal: node_modules/lightning-base-
components/src/lightning folder and
npm install @salesforce-ux/design-system replace all from ‘c/ with from ‘lightning/.
Once you've done this, you then need You might also need to copy formatted
to copy the assets folder from node_ Lookup from this component because
modules/@salesforce-ux/design- it may be missing. If it is, the lightning-

system to src/client/resources.

Before we can use the slds resources we

need, you must first add the following You should feel proud of yourself at
this point, as you can now use the LWC
components in your application.

="stylesheet" Now we are ready to create

the Electron application.
="/resources/assets/styles/

salesforce-lightning-design-system.min.css"

/>

Whitepaper Running Salesforce Applications On Electron 7

https://github.com/salesforce/base-components-recipes

STEP 3:
INSTALL ELECTRON

First, you need to install it by
running this command:

npm install electron

The starting point of the Electron
app is the package.json file. You will
need to specify the entry point. To
do that, modify the package.json
file in the root folder as follows:

"main": "src/main.js",

"scripts": {

"watch": "run-p watch:client

watch:server start-electron",

n

"start-electron": "electron

This modification adds the start-
electron command and adds it to the
watch command. When the start-
electron command is executed, it
will look for the js file. This file was
specified in the main configuration.

Next, you need to create
the src/main.js file.

electron = require('electron’)

{app, BrowserWindows} = electron

PORT = 3001

Whitepaper Running Salesforce Applications On Electron

(‘'ready’, _=>{
mainWindow = BrowserWindow({
width 1200
height: 800
webPreferences: {

nodelntegration:

})
mainWindow. ("http:/
localhost:${PORT}/")

(‘close', =>{

mainWindow=

Once you've done that, it's time to
test your efforts by running this
command in the terminal:

npm run watch
Well done! Now you've created your

Electron app and pointed your Lightning
Base Components app to the main window.

STEP 4:
THE APPLICATION

This is where you get to the part of
the process where you can access
the Salesforce data and render

it in Electron using LWC.

To keep it simple, you want to modify the
main page so that it has a Login button.
You can set it up so that after the user
clicks it, it will connect to Salesforce.
Then it can be added to the Accounts
records, and you can render those with
lightning-data table component.

Let's start by modifying the src/
client/modules/my/app/app.html

class="center"

src="./resources/lwc.png"

<I-- Page code -->

class="center"

variant="brand"
label="Login"
title="Login"
onclick={handleClick}

Whitepaper Running Salesforce Applications On Electron

class="slds-m-left_x-small"

You've now removed the greetings section
and added the lightning-button component.

Next, you'll need to add the handler
for the button click in the src/client/
modules/my/app/app.js file.

{ LightningElement } lwc'

App
LightningElement {
04
port = 3002

Jocation.href = “http://
localhost:${port}/oauth2/auth’

As you can see, it points to the URL /
oauth2/auth. While you don't

have a route for it yet, you can

still go ahead and create it.

After you've done that, you can
check yourself by running: .

npm run watch

It will look something like this:

Next, you will update the src/
server/api.js file:

require('dotenv').config();

/I Simple Express server setup to serve

for local testing/dev API server

const compression = require(‘compression’);

const helmet = require('helmet’);
const express = require('express');

const jsforce = require('jsforce’);

const connectionService = require('../../

scripts/connectionService'),

const {CLIENT_ID, CLIENT_SECRET,

REDIRECT_URL, LOGIN_URL} = process.env;

let LocalStorage = require('node-
localstorage').LocalStorage,;

let IcStorage = new LocalStorage('./config');

const app = express(),

let oauth2 = new jsforce.OAuth2({
loginUrl: LOGIN_URL,
clientld : CLIENT_ID,
clientSecret : CLIENT_SECRET,
redirectUri : REDIRECT_URL

3

app.use(helmet());

app.use(compression());

const HOST = process.env.
API_HOST || 'localhost’;

const PORT =3002;

let conn;

app.get(/api/vi/endpoint’, (req, res) => {

res.json({ success: true });

N,

Whitepaper Running Salesforce Applications On Electron

10

app.listen(PORT, () =>
console.log(

API Server started:
http:/${HOST}:${PORT}/api/vi/endpoint’

)
)
app.get(/oauth2/auth’, function(req, res) {

//res.redirect(oauth?.

getAuthorizationUrl({ scope : 'full' }));

res.redirect(oauth?2.

getAuthorizationUrl({ scope : 'full' }));

b

app.get('/oauth2/callback’,
function(req, res) {

conn = new jsforce.Connection({
oauth2 : oauth2 });

let code = req.param('code’);

conn.authorize(code,

function(err, userinfo) {

if (err) { return console.error(err); }

IcStorage.setltem('accessToken', conn.

accessToken ? conn.accessToken : ");

IcStorage.setltem('refreshToken’, conn.

refreshToken ? conn.accessToken : '");

IcStorage.setltem('instanceUrl', conn.

instanceUrl ? conn.instanceUrl : ");

res.redirect(http://
localhost:${PORT}/getAccounts’);

3,

3

app.get('/getAccounts’, (req, res) => {
let connection = connectionService.

getConnection();
if(connection){

connection.query("SELECT Id, Name

FROM Account", function(err, result) {
if (err) {
console.log(‘err’);
console.log(err);
}else {
console.log(result);

res.json(result);

3,

3

Whitepaper Running Salesforce Applications On Electron

11

You will need to create scripts\
connectionService.js like this:

let LocalStorage = require('node-

localstorage').LocalStorage;

let IcStorage = new LocalStorage('./config');

const jsforce = require('jsforce’);

et conn;

let getConnectionParams = function() {
return {

instanceUrl: IcStorage.

getltem('instanceUrl'),

accessToken: IcStorage.

getltem('accessToken'),

version: IcStorage.

getltem('refreshToken’)

}
}

let getConnection =

function(connectionParams) {
//localStorage.clear();
if (conn !'= null) return conn;

let instanceUrl = IcStorage.

getltem('instanceUrl");

Whitepaper Running Salesforce Applications On Electron

let accessToken = IcStorage.

getltem('accessToken');

if (instanceUrl I==" && instanceUr]|
== null && accessToken !=="

&& accessToken !==null) {
return new jsforce.Connection(

(connectionParams == null) ?

getConnectionParams() : connectionParams
),
}

return null;

}

module.exports.getConnection

= getConnection;

module.exports.getConnectionParams

= getConnectionParams;

After that, you will need to install modules
by running the following scripts:

npm install jsforce
npm install dotenv

npm install node-localstorage

12

You will then create a .env file in the
root folder and populate CLIENT_ID and
CLIENT_SECRET with the Electron_Local
app credentials from Salesforce.

You should see something like this:

CLIENT_
ID=3MVG9Lu3LaaTCEgJchaOtnMX5TfBUwI8ZeCXng47FFiZA6v5TVIMWWRROCRXjCCWXS...

CLIENT_SECRET=4966032253448E037744F5D75E295F52568D1565D451671E92BF5AFC...
REDIRECT_URL=http://localhost:3002/0auth2/callback

LOGIN_Url=https://test.salesforce.com

Your Electron app changes by running:
npm run watch

After you click login, you should see
the Salesforce standard login form

Whitepaper Running Salesforce Applications On Electron

13

At this point, you can see how the
user credentials will work.

Fill in test user credentials, and you will be
redirected to the /getAccounts route. This

is what you should expect to see there:

That is the information from your
Accounts from the app. You will soon
be able to show this data with the
lightning-datatable component.

To begin this step, you need to update
src/server/api.js as follows:

app.get(/isAuthorized', (req, res) => {
let result = connectionService.
02 : ;

res.end(result)

Next, create the accounts component
in src/client/modules/my/ folder
with src/client/modules/my/
accounts/accounts.htmil:

='s|lds-m-bottom--medium'

variant="brand"
label="Get Accounts"
title="Get Accounts"
onclick={getAccounts}

class="slds-m-left_x-small"

Whitepaper Running Salesforce Applications On Electron

14

<l-- Check if data is available -->

<template if:true={isAccountsAvailable}>

<div class='slds-p-around--large'>
<lightning-datatable
key-field="1d"
data={accounts}
columns={columns}>
</lightning-datatable>
</div>
</template>

</template>

Followed by src/client/modules/
my/accounts/accounts.js:

import { LightningElement } from 'lwc’;

const columns =[
{label: 'ld", fieldName: 'ld" },
{label: 'Name', fie[dName: 'Name'}
I
export default class Accounts

extends LightningElement {
accounts =[J;

columns = columns;

getAccounts(){

/lusing javascrip native fetch

method to get data from server
fetch(/getAccounts').then(res => {
res.json().then(data =>{
this.accounts = data.records;
3
H.catch(err =>{
console.error(err);
3,
}
//getter method to check if

students array have value
get isAccountsAvailable(){

return this.accounts.length > 0;

}
After that, you'll create it in CSS
by using src/client/modules/

my/accounts/accounts.css.
a[role="menuitemcheckbox"] {

display: none limportant;

Whitepaper Running Salesforce Applications On Electron

15

Then you will need to update src/
client/modules/my/app/app.html
with the following commands:

<template>
<div class="center">

</div>
<!I-- Page code -->
<div class="center">
<template if:false={isAuthorized}>
<div>
<lightning-button
variant="brand"
label="Login"
title="Login"
onclick={handleClick}

class="slds-m-left_x-small">

</lightning-button>
</div>
</template>
<template if:true={isAuthorized}>

<div>

<my-accounts></my-accounts>
</div>
</template>
</div>

</template>
Lastly, you will update src/client/

modules/my/app/app.js:
import { LightningElement } from 'lwc’;

export default class App extends

LightningElement {
isAuthorized;
connectedCallback() {
fetch(/isAuthorized').then(res => {
res.json().then(data =>{
this.isAuthorized = data;
console.log(data);
D
}.catch(err =>{
console.error(err);
»;
}
handleClick() {

Whitepaper Running Salesforce Applications On Electron

window.location.href = /oauth2/auth”

}

You can then run npm run watch
to check your results. You will
see something like this.

While you could stop here, it's better to
keep going and add to this app the ability
to update account records in Salesforce.

This will mean creating two more
Lightning Custom Components. The first
is @ custom data table cell for a lightning-
datatable component, and the second

is a single account record component.

‘

D\

S

STEP 6: UPDATE ACCOUNT
RECORD IN SALESFORCE FROM
ELECTRON APP

To begin creating your custom cell
component, you'll need to use the
following: src/client/modules/
my/customLightningDatatable/
editRecordCustomType.html.

class='slds-p-horizontal--small'
onclick={ }
{recordld}

Next, you'll create src/client/modules/
my/editRecordCustomType/
editRecordCustomType.js with:

import { LightningElement, api } from 'lwc’;

export default class
EditRecordCustomType extends
LightningElement {

@api recordld;

fireOpenRecordEditAction(e) {
console.log('fire:" + this.recordld);
e.preventDefault();

const event = new

CustomEvent('openrecordeditaction’, {

Whitepaper Running Salesforce Applications On Electron 17

:true

s true
i true
{
: this.recordld
}
)
this.dispatchEvent(event)

}

To create your custom data table
component, you will add the src/client/
modules/my/customLightningDatatable
component with the following files:

First, add src/client/modules/
my/customLightningDatatable/
customLightningDatatable.html

<template></template>

Then add src/client/modules/
my/customLightningDatatable/
customLightningDatatable.js.

LightningDatatable
‘lightning/datatable’

editRecordCustomType
'./editRecordCustomType.html'

CustomLightningDatatable
LightningDatatable {

customTypes = {
editRecordCustomType: {
template: editRecordCustomType,
:['recordld']

}

Next, add src/client/modules/
my/customLightningDatatable/
editRecordCustomType.html.

</my-edit-record-custom-type>

Whitepaper Running Salesforce Applications On Electron 18

After that, you need to update src/client/
modules/my/accounts/accounts.html.

<template>
<div class='slds-m-bottom--medium'>
<lightning-button
variant="brand"
label="Get Accounts"
title="Get Accounts"
onclick={getAccounts}
class="slds-m-left_x-small">
</lightning-button>
</div>
<l-- Check if data is available -->
<template if:true={isAccountsAvailable}>
<div class='slds-p-around--large'>
<my-custom-lightning-datatable
key-field="1d"
data={accounts}
columns={columns}

onopenrecordeditaction={handleRecord
EditAction}

hide-checkbox-column
>
</my-custom-lightning-datatable>
</div>
</template>
</template>

Followed by updating src/client/
modules/my/accounts/accounts.js:

import { LightningElement } from 'lwc’;
const columns =[

{ label: 'Custom Type A', fieldName:
'Id', type: 'editRecordCustomType'},

{ label: 'Name', fieldName: 'Name'}
¥
export default class Accounts
extends LightningElement {

accounts =[J;
columns = columns;
getAccounts(){

//using javascrip native fetch
method to get data from server

fetch(/getAccounts').then(res => {

Whitepaper Running Salesforce Applications On Electron

19

Jjson().then(data =>{
.accounts = data.records
D
1. (err=>{
.error(err)
)

}
//getter method to check if

students array have value
isAccountsAvailable(){

this.accounts.length > 0

RecordEditAction(event) {
{recordld } = .detail

account = this.accounts.

find(function(item, index) {
(item.ld === recordId){

item

1)

Once you've reached this point, we will
now create the /updateAccount route.

This will send account records from
the front end. To do that, we need to
install a body-parser module, using:

npm install body-parser

From there, you will need to update src/

server/api.js by using the following script:

bodyParser = require("body-parser")

.use(bodyParser.urlencoded({

false })), // support encoded bodies
.use(bodyParser.json()); //

support json encoded bodies

.get('/getAccounts', (req, res) => {

Jog('Getting Accounts...")

connection = connectionService.

Connection()
(connection){
connection.query("SELECT
Id, Name, AccountNumber FROM
Account", function(err, result) {

(err) {
Jlog(err)

Whitepaper Running Salesforce Applications On Electron

20

|cStorage.clear();

res.redirect(”http://
localhost:3001/7);

Yelse {
console.log(result);

res.json(result);

3

app.post(/updateAccount!, (req, res) => {
console.log('Updating account...");
/1 Single record update

let connection = connectionService.

getConnection();
connection.sobject("Account").update({
|d : req.body.recordld,
Name : req.body.accountName
}, function(err, ret) {
if (err || !ret.success) {

IcStorage.clear();

return res.json({status:
'ERROR, err: err});

res.redirect("http://localhost:3001/7);

return res.json({status:
'ERROR, err: err});

}
return res.json({status: 'SUCCESS"});
)}
)

As we've done before, you'll need to
create a data service component on .js by
using the following: src/client/modules/
my/dataService/dataService.js.

let updateAccount = async function

updateAccount(params) {
const searchParams = Object.
keys(params).map((key) => {

return encodeURIComponent(key) +

'="+ encodeURIComponent(params[key]);
D.join(&);
let response = await fetch('http://
localhost:3002/updateAccount’, {
method: 'POST,
mode: 'no-cors’,
headers: {

'Content-Type": 'application/x-
www-form-urlencoded;charset=UTF-8'

Whitepaper Running Salesforce Applications On Electron

3
body: searchParams
3,
const data = await response;
return data;
}
let getAccounts = async function(){
let response = await fetch(/getAccounts');
const data = await response.json();
return data.records;

}

export {updateAccount, getAccounts};

You will then need to create the account
component src/client/modules/my/
account and include the following files:

First, src/client/modules/my/
account/account.html.

<template>
<article class="slds-card
slds-m-top--large">
<div class="slds-card__

header slds-grid">

<header class="slds-media slds-

media_center slds-has-flexi-truncate">
<div class="slds-media__figure">
<lightning-icon icon-
name="standard:account"

size="small"></lightning-icon>
</div>
<div class="slds-media__body">

<h2 class="slds-

card__header-title">

<a href="#" class="slds-card__

header-link slds-truncate" title="Accounts">
Account

</h2>
</div>
</header>
</div>

<div class="slds-card__body

slds-card__body_inner">
<lightning-input
type="text"

name="name"

Whitepaper Running Salesforce Applications On Electron 22

class="recordName" h.then(() => {

label="Name" const event = new
value={record.Name}' CustomEvent('afterupdate’, {
onblur="thandleNameChange}' composed: true,
></lightning-input> bubbles: true,
</div> cancelable: true,
</article> detail: {
</template> recordld: this.recordld
2
Next, src/client/modules/ D
my/account/account.js. this.dispatchEvent(event);

b

import { LightningElement, api } from 'lwc’;
import {updateAccount}
from 'my/dataService'

export default class Account

Once again, you will need to update
src/client/modules/my/accounts/
@api record; accounts.html with this script:

extends LightningElement {

handleNameChange() { <t late>
emplate

let element = this.template. ‘
<div class='slds-p-around--large'
querySelector(".recordName");
<div class='slds-m-bottom--medium'>
updateAccount({
<lightning-button
recordld:this.record.ld,
variant="brand"
accountName: element.value

Whitepaper Running Salesforce Applications On Electron 23

label="Get Accounts"
title="Get Accounts"
onclick={getAccounts}
class="slds-m-left_x-small">
</lightning-button>
</div>
<l-- Check if data is available -->

<template

if:true={isAccountsAvailable}>
<my-custom-lightning-datatable
key-field="1d"
data={accounts}

columns={columns}
onopenrecordeditaction={handleRecord
EditAction}

hide-checkbox-column
>
</my-custom-lightning-datatable>
</template>
<template ifitrue={isAccountSelected}>

<my-account
record='{selectedAccount}'

onafterupdate='{handleAccountUpdate}">

</my-account>
</template>
</div>

</template>

Followed by updating src/client/
modules/my/accounts/accounts.js.

import { LightningElement } from 'lwc';
import {getAccounts} from
'my/dataService’;

const columns =[

{label: 'Account Id', fieldName: 'ld’,
type: 'editRecordCustomType'},

{label: 'Name', fieldName: 'Name'},

{label: '"Account Number’,

fieldName: 'AccountNumber'}
I§
export default class Accounts

extends LightningElement {
accounts =[J;
columns = columns;
selectedAccount;
isAccountSelected = false;
getAccounts(){

getAccounts().then(data => {

Whitepaper Running Salesforce Applications On Electron

24

.accounts = data

1

}

//getter method to check if
students array have value

isAccountsAvailable(){

this.accounts.length > 0

RecordEditAction(event) {
{recordld } = event.detail

account = this.accounts.

(function(item, index) {
(item.ld === recordld){

item

)

(account == null) {

.isAccountSelected = true

.selectedAccount = account

AccountUpdate() {
Accounts().then(data => {

.accounts = data

1)

Congratulations! You did it!

You can run your app check one
more time using: npm run watch:

One last detail to mention is that when
you are making queries to Salesforce,

it will respect CRUD, FLS, and sharing
settings. If you don’t have access to a

specific field, you will get an error, and

you won't be able to see records.

Whitepaper Running Salesforce Applications On Electron

25

CONCLUSION

Using Electron to run your Salesforce
application gives you the power to do
more than just retrieving and updating
data in Salesforce. It also includes the
full capabilities and power of Node.

Js. This means you can learn more
about who interacts with your app

and their environment. It also means

e er e —ry o~ . T rt

issue, the access to Node.js capabilities
and the Electron framework
means the effort is worth it.

Whitepaper Running Salesforce Applications On Electron

26

ABOUT US

SoftServe is a digital authority that advises and provides at the
cutting-edge of technology. We reveal, transform, accelerate, and
optimize the way enterprises and software companies do business.
With expertise across healthcare, retail, energy, financial services,
and more, we implement end-to-end solutions to deliver the
innovation, quality, and speed that our clients’ users expect.

SoftServe delivers open innovation, from generating compelling new ideas,
to developing and implementing transformational products and services.

Our work and client experience is built on a foundation
of empathetic, human-focused experience design that
ensures continuity from concept to release.

We empower enterprises and software companies to (re)identify
differentiation, accelerate solution development, and vigorously compete
in today’s digital economy-no matter where you are in your journey.

Visit our website, blog, LinkedIn, Facebook, and Twitter pages.

NORTH AMERICAN HQ

201 W 5th Street, Suite 1550
Austin, TX 78701 USA

+1 866 687 3588 (USA)

+1 647 948 7638 (Canada)

EUROPEAN HQ

30 Cannon Street
London EC4M 6XH
United Kingdom
+44 333 006 4341

APAC HQ

6 Raffles Quay
#14-07

Singapore 048580
+65 31 656 887

info@softserveinc.com

www.softserveinc.com SOftse rve

https://www.softserveinc.com/en-us
https://www.softserveinc.com/en-us/blog
https://www.linkedin.com/company/softserve/
https://www.facebook.com/SoftServeInc
https://twitter.com/SoftServeInc

