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Most robotics projects still depend on manual programming and extensive real-world testing. While 
effective in structured settings, these methods cannot cope with the variability of real industrial 
environments. When a part is warped, a surface is unexpectedly slippery, or a fixture is slightly 
misaligned, robots often fail. Such failures cause downtime, rework, and delayed scalability, reducing 
the return on automation investments. The core issue is that pre-programmed logic cannot handle 
novelty beyond predefined parameters, resulting in rigid and brittle systems. 

Physical AI, combined with high-fidelity virtual simulation, introduces a new paradigm. Instead 
of relying on fixed program rules, robots learn within physics-rich environments that replicate real-
world dynamics. This training builds resilience and adaptability before deployment, reducing the need 
for physical calibration and enabling policies that generalize across related tasks and conditions. By 
designing and validating robotic behavior in simulation, organizations can cut the cost and risk of 
prototyping, shorten integration timelines, and scale automation across sites more reliably. 

Simulation-to-reality gap in robotics 
The simulation-to-reality gap refers to the mismatch between how a robot behaves in a simulated 
environment and how it performs in the real world. Even highly detailed simulators struggle to 
capture the full variability of physical systems, which leads to reduced reliability and unpredictable 
behavior once robots leave controlled virtual settings. As one of the central challenges in robotics, 
bridging this gap remains the primary driving force for the constant evolution and advancement of 
control algorithms in robotics.  

Early industrial robots were governed by classical control and model-based paradigms that 
relied on explicit mathematical descriptions of motion and force. Techniques such as linear 
quadratic regulators (LQR) and model predictive control (MPC) used dynamical models 
to generate control actions, while simpler feedback schemes such as proportional–integral–
derivative control (PID) provided practical regulation in well-understood operating regimes. 
Together, these methods enabled precise motion tracking and stable trajectory execution in 
structured settings such as assembly lines and fixed manipulation cells, as depicted in Figure 1. 

Figure 1. Comprehensive digital twin of a conveyor belt with a robotic arm performing motherboard assembly

From deterministic control to adaptive systems 
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The limitations of model-based systems opened the door to reinforcement learning (RL), where 
control policies are learned through trial and error instead of explicit modeling. In RL, an agent 
interacts with its environment, receives rewards or penalties based on performance, and 
iteratively improves its behavior.

RL proved capable of mastering complex, 
high-dimensional tasks such as autonomous 
navigation or dexterous manipulation (see 
Figure 3), which were previously intractable for 
model-based control. This shift was enabled 
by advances in neural architectures such 
as deep neural networks and liquid neural 
networks. These architectures allow RL policies 
to represent non-linear behaviors and adapt 
online to changing conditions during training 
and deployment.

However, this flexibility came at a price. RL is data-hungry and sample-inefficient. Training 
policies robustly require millions of interactions, which are impossible to conduct safely or 
economically on real hardware. As a result, simulation became the only practical training 
ground.

Figure 2. RL policy training as an optimization problem

Figure 3. Humanoid robot using reinforcement learning to perform 

object handling in a brownfield automation environment

The rise of learning-based control

As tasks became more complex and environments less constrained, the limitations of these 
methods became clearer. PID control is purely reactive and does not predict future states, while 
model-based controllers such as LQR and MPC depend on mathematical models that describe 
only the dominant and most manageable aspects of a robot’s dynamics. Although classical 
controllers include robustness margins, their performance drops once model inaccuracies 
exceed those margins. Maintaining accurate models or tuning controllers for every new 
condition became impractical, which created the need for approaches that could learn directly 
from data and adapt to uncertainty.
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Imitation learning and inverse reinforcement learning aim to achieve faster and more accurate 
policy convergence by learning directly from expert demonstrations. These approaches reduce 
data requirements but rarely capture the full variability of real operations. As a result, synthetic 
data generation in simulation remains the only scalable source of diverse scenarios.

This introduces a new dependency: the fidelity of the simulated world. Policies trained in 
simplified or idealized environments often fail when confronted with the noise, uncertainty, 
and complexity of the physical world. The mechanism and source of the simulation-to-reality 
gap have fundamentally changed. The focus has drifted away from perfecting the robot’s 
internal dynamics model to ensuring the fidelity of the external environment model for 
robust policy generalization.

Although the shift to RL control policies allowed for better robustness and significantly 
attenuated the simulation-to-reality gap in robotics, several key issues emerged: 

These challenges revealed that data alone cannot close the gap. The quality and realism of 
simulation matter as much as the quantity of experience.

Data bottleneck: Even in simulation, learning 
from random exploration is inefficient. 
Collecting sufficient data for robust policies 
can take days or weeks of simulated time.

Domain randomization: Introducing 
variations in simulation, for example, in 
friction, lighting, or geometry, improves 
robustness but cannot fully replicate real-
world uncertainty.

Generalization limits: Agents often overfit 
to the specific characteristics of a simulator’s 
physics engine. Slight differences in contact 
modeling or sensor response can lead to real-
world failure.

Computational inefficiency: RL training 
relies on stochastic sampling, making it slow 
to converge, which hinders scalability for 
industrial use.

New challenges in the learning era
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Close the Gap with high-fidelity virtual gyms
As seen in Table 1, below, the evolution of robotic control shows a clear trajectory, from brittle, 
model-based systems, through expensive imitation learning, toward reinforcement learning 
supported by simulation and domain randomization. Each step improved adaptability but left critical 
gaps in data efficiency and real-world robustness. To overcome these limitations, robotics is now 
moving toward differentiable and physics-informed world models. 

Differentiable simulation allows gradients to propagate directly through the physics engine, which 
enables robots to optimize their policies using analytical feedback rather than random sampling. This 
significantly improves learning efficiency and stability. 

At the same time, hybrid modeling that combines first-principle physics with machine learning 
offers a way to represent phenomena that are difficult to model explicitly, such as deformable 
materials, contact friction, or fluid-structure interactions. These developments promise virtual 
environments where learned strategies remain valid when transferred to real hardware.

High-fidelity virtual gyms provide realistic, multi-physics environments where robots learn and 
validate control strategies before deployment. They combine three core principles:

Together, these capabilities enable the development of physical AI — intelligent systems that can be 
trained virtually and transferred to physical equipment with minimal recalibration.

Physically accurate 
modeling of dynamic 
interactions

Scalable,  
parallelized  
training

Differentiable 
simulation for efficient 
policy optimization

Paradigm Strengths Limitations Impact on the Sim-
ulation-to-Reality 
Gap

Classical Control (PID, 
LQR, MPC)

Precise, determinis-
tic, stable for known 
systems

Requires perfect 
models; fragile under 
real-world uncertainty

High – fails when the 
environment deviates 
from assumptions

Model-Free Reinforce-
ment Learning

Learns directly from 
data; adapts to unmod-
eled dynamics

Extremely data-hungry; 
prone to overfitting 
simulator artifacts

Moderate – flexible but 
inconsistent in reality

Hybrid / Differentia-
ble Simulation

Combines physical 
accuracy with efficient 
optimization

Computationally com-
plex; still emerging

Low – most promising 
path toward closing the 
gap

Table 1. Evolution of robotic control paradigms
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To achieve this realism, hybrid solvers combine first-principle physics with data-driven residual 
models tuned from real-world data. This hybridization allows the simulator to represent challenging 
effects such as granular media behavior, non-linear friction, or soft-body deformation with greater 
accuracy.

For multi-physics systems, co-simulation frameworks integrate specialized solvers into a unified 
environment, as illustrated in Figure 4. The functional mock-up interface (FMI) standard enables 
interoperability through Functional Mock-up Units (FMUs). Commercial platforms such as Ansys Twin 
Builder extend FMI for strong coupling, while open-source frameworks like preCICE offer alternative 
iterative schemes for robust, tightly coupled multi-physics integration.

High-fidelity world models 

Figure 3. High-Fidelity simulation of HVAC system in a warehouse

Figure 4. Co-Simulation and High-Fidelity Modelling Framework
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These high-fidelity frameworks generate realistic training data, exposing control policies to the same 
physical subtleties they will face on the factory floor. This realism is the foundation for policies that 
remain stable and transferable when deployed on real hardware. 

High fidelity improves realism but can be computationally expensive for large-scale RL. Differentiable 
world models, implemented in frameworks such as PyTorch and JAX, address this by allowing 
gradients to flow from the policy objective through the environment. Policies can then be optimized 
end-to-end with analytical gradients rather than relying only on stochastic sampling.

Within actor-critic learning, the critic leverages gradient information propagated through the 
differentiable environment to provide dense, informative feedback to the actor. This improves 
convergence, reduces the number of samples required, and lowers the amount of real-world fine-
tuning after simulation.

To manage computational load while preserving essential physics, AI/ML surrogates replace 
expensive modules where appropriate. Options include neural ordinary differential equations 
(Neural-ODEs) and physics-Informed neural networks (PINNs), which incorporate physical 
structure and conservation properties, as illustrated in Figure 5, as well as reduced-order models 
(ROMs) that compress CFD or FEM systems to capture dominant modes efficiently. The broader area 
of physics-informed machine learning (PIML) extends these strategies toward generalizable, fast 
approximations suitable for control optimization.

High-fidelity virtual gyms use these components with parallelized training and domain randomization 
to expose policies to distributions of dynamics, sensing noise, and geometry. The result is learning 
that is both physically grounded and computationally efficient, positioning policies for robust transfer 
from simulation to real equipment. 

Differentiable world models

Figure 5. Development of Exhaust System Flow-Thermal Analysis Using PINNs Approach
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Phase Objective Core Techniques Outcome

Training in Physics-In-
formed Virtual Gym

Build generalizable 
control policies

High-fidelity simulation 
with differentiable sur-
rogates; hybrid resid-
ual modeling; domain 
randomization across 
physics, lighting, and 
sensors

Robust policies tolerant 
to unseen variance

Tuning & Calibration Align digital and real 
dynamics

System identification 
loop using telemetry 
to refine simulation 
parameters

Accurate virtu-
al-to-physical correla-
tion

Safe Deployment & 
Progressive Autono-
my

Minimize operational 
risk during rollout

Shadow-mode opera-
tion and gradual trans-
fer of control authority 
from legacy logic to 
learned policy

Proven reliability and 
safe handover

Production-ready robotics 
Deploying learned policies safely and effectively in real operations requires a structured workflow that 
ensures consistency between simulation and physical systems:

Effective transfer from simulation to the factory floor depends on maintaining alignment between 
digital and physical domains. The key elements of this process are summarized in Table 2:

Assess: Identify high-variance, high-value tasks such as bin-picking of irregular parts, 
adaptive weld-seam tracking, or visual inspection. Define quantitative success metrics (cycle 
time, pick success rate, defect detection accuracy).

Model: Build a high-fidelity digital twin of the work cell using CAD geometry, sensor layouts, 
and material libraries reflecting real friction, mass, and compliance. The virtual gym can auto-
generate a simulated cell using validated material libraries and imported CAD/assets.

Train: Within the virtual gym, apply curriculum-based reinforcement learning across parallel 
simulations. Enforce safety constraints such as joint limits, velocity caps, and exclusion zones

Validate: Run hardware-in-the-loop tests where the physical controller executes the learned 
policy while telemetry is mirrored in simulation. Confirm dynamic behavior and predictive 
accuracy.

Deploy: Containerize the validated policy and distribute it to edge devices. Continuous 
improvement follows through over-the-air updates that refine policies fleet-wide as new data 
is collected.

1

2

3

4

5

Table 2. Phases of effective simulation-to-reality transfer
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This integrated workflow enables a systematic, low-risk transition from simulated learning to real-
world autonomy while maintaining traceability, and it delivers tangible benefits across engineering, 
operations, and safety:

Faster iteration: Engineering teams can design, validate, and refine control policies 
entirely in simulation, eliminating costly physical prototypes and avoiding production 
stoppages.

Resilient performance: Physics-driven training enables robots to handle production 
variances, such as SKU changes, fixture misalignments, or environmental disturbances, 
without manual reprogramming.

Higher quality: Stress-testing policies against millions of virtual edge cases 
exposes and corrects failure modes before deployment, reducing scrap and 
rework.

Increased safety: Hazardous tasks, such as chemical handling, high-heat operations, 
or inspection in confined spaces, can be perfected in simulation, minimizing human 
exposure and extending equipment life.

Continuous improvement: Integration with CI/CD pipelines allows over-the-air 
updates to be delivered across fleets, ensuring robots learn collectively and remain 
aligned with evolving operational goals.
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Take the leap:  
From virtual gym to real-world physical AI 
and beyond
SoftServe delivers a complete pathway for organizations ready to operationalize physical AI. Our 
approach begins with the creation of high-fidelity virtual gyms tailored to each client’s specific 
use case, combining physics-based simulation with accurate models of materials, sensors, and 
equipment. We select and train AI surrogate models that accelerate computation while preserving 
essential physical behavior within digital environments. Robots are trained inside such virtual 
gyms, enabling fast and reliable control policy development and validation. 

Finally, SoftServe guides the transfer to physical systems through targeted fine-tuning in real 
scenarios. This closes the simulation-to-reality gap and ensures that deployed policies remain 
stable, predictable, and aligned with operational goals. With this capability in place, organizations 
gain scalable, adaptable automation that continues to improve throughout its lifecycle.

SoftServe stands ready to help you implement physical AI and bring robust, high-performance 
robotics into real production environments. Contact us to turn virtual training into lasting 
operational value.

Contact Us
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About US 
SoftServe is a premier IT consulting and digital services provider.  
We expand the horizon of new technologies to solve today's complex business 
challenges and achieve meaningful outcomes for our clients. 
Our boundless curiosity drives us to explore and reimagine the art 
of the possible. Clients confidently rely on SoftServe to architect and 
execute mature and innovative capabilities, such as digital engineering, 
data and analytics, cloud, and AI/ML, robotics and physical AI. 

Our global reputation is gained from more than 30 years of experience 
delivering superior digital solutions at exceptional speed by top-tier engineering 
talent to enterprise industries, including high tech, financial services, 
healthcare, life sciences, retail, energy, and manufacturing. 
Visit our website, blog, LinkedIn, Facebook, and X (Twitter) pages 
for more information.

AUSTIN HQ

201 W. 5th Street, Suite 1550 
Austin, TX 78701 
+1 866 687 3588 (USA)           
Toll Free: +1 866 687 3588 

LONDON

30 Cannon Street
London EC4 6XH
United Kingdom 
+44 203 807 01 41

info@softserveinc.com 
www.softserveinc.com

https://www.softserveinc.com/
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https://www.linkedin.com/company/softserve
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