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Most robotics projects still depend on manual programming and extensive real-world testing. While
effective in structured settings, these methods cannot cope with the variability of real industrial
environments. When a part is warped, a surface is unexpectedly slippery, or a fixture is slightly
misaligned, robots often fail. Such failures cause downtime, rework, and delayed scalability, reducing
the return on automation investments. The core issue is that pre-programmed logic cannot handle

novelty beyond predefined parameters, resulting in rigid and brittle systems.

Physical Al, combined with high-fidelity virtual simulation, introduces a new paradigm. Instead

of relying on fixed program rules, robots learn within physics-rich environments that replicate real-
world dynamics. This training builds resilience and adaptability before deployment, reducing the need
for physical calibration and enabling policies that generalize across related tasks and conditions. By
designing and validating robotic behavior in simulation, organizations can cut the cost and risk of
prototyping, shorten integration timelines, and scale automation across sites more reliably.

Simulation-to-reality gap in robotics

The simulation-to-reality gap refers to the mismatch between how a robot behaves in a simulated
environment and how it performs in the real world. Even highly detailed simulators struggle to
capture the full variability of physical systems, which leads to reduced reliability and unpredictable
behavior once robots leave controlled virtual settings. As one of the central challenges in robotics,
bridging this gap remains the primary driving force for the constant evolution and advancement of
control algorithms in robotics.

From deterministic control to adaptive systems

Early industrial robots were governed by classical control and model-based paradigms that
relied on explicit mathematical descriptions of motion and force. Techniques such as linear
quadratic regulators (LQR) and model predictive control (MPC) used dynamical models

to generate control actions, while simpler feedback schemes such as proportional-integral-
derivative control (PID) provided practical regulation in well-understood operating regimes.
Together, these methods enabled precise motion tracking and stable trajectory execution in
structured settings such as assembly lines and fixed manipulation cells, as depicted in Figure 1.

Figure 1. Comprehensive digital twin of a conveyor belt with a robotic arm performing motherboard assembly
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As tasks became more complex and environments less constrained, the limitations of these
methods became clearer. PID control is purely reactive and does not predict future states, while
model-based controllers such as LQR and MPC depend on mathematical models that describe
only the dominant and most manageable aspects of a robot's dynamics. Although classical
controllers include robustness margins, their performance drops once model inaccuracies
exceed those margins. Maintaining accurate models or tuning controllers for every new
condition became impractical, which created the need for approaches that could learn directly
from data and adapt to uncertainty.

The rise of learning-based control

The limitations of model-based systems opened the door to reinforcement learning (RL), where
control policies are learned through trial and error instead of explicit modeling. In RL, an agent
interacts with its environment, receives rewards or penalties based on performance, and
iteratively improves its behavior.

Figure 2. RL policy training as an optimization problem

RL proved capable of mastering complex,
high-dimensional tasks such as autonomous
navigation or dexterous manipulation (see
Figure 3), which were previously intractable for
model-based control. This shift was enabled
by advances in neural architectures such

as deep neural networks and liquid neural
networks. These architectures allow RL policies
to represent non-linear behaviors and adapt

online to cha nging conditions du ring training Figure 3. Humanoid robot using reinforcement learning to perform
object handling in a brownfield automation environment
and deployment.

However, this flexibility came at a price. RL is data-hungry and sample-inefficient. Training
policies robustly require millions of interactions, which are impossible to conduct safely or
economically on real hardware. As a result, simulation became the only practical training
ground.
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New challenges in the learning era

Imitation learning and inverse reinforcement learning aim to achieve faster and more accurate
policy convergence by learning directly from expert demonstrations. These approaches reduce
data requirements but rarely capture the full variability of real operations. As a result, synthetic
data generation in simulation remains the only scalable source of diverse scenarios.

This introduces a new dependency: the fidelity of the simulated world. Policies trained in
simplified or idealized environments often fail when confronted with the noise, uncertainty,
and complexity of the physical world. The mechanism and source of the simulation-to-reality
gap have fundamentally changed. The focus has drifted away from perfecting the robot's
internal dynamics model to ensuring the fidelity of the external environment model for
robust policy generalization.

Although the shift to RL control policies allowed for better robustness and significantly
attenuated the simulation-to-reality gap in robotics, several key issues emerged:

X [©]

Data bottleneck: Even in simulation, learning  Generalization limits: Agents often overfit

from random exploration is inefficient. to the specific characteristics of a simulator’s
Collecting sufficient data for robust policies physics engine. Slight differences in contact
can take days or weeks of simulated time. modeling or sensor response can lead to real-

world failure.

N

Domain randomization: Introducing Computational inefficiency: RL training
variations in simulation, for example, in relies on stochastic sampling, making it slow
friction, lighting, or geometry, improves to converge, which hinders scalability for
robustness but cannot fully replicate real- industrial use.

world uncertainty.

These challenges revealed that data alone cannot close the gap. The quality and realism of
simulation matter as much as the quantity of experience.
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Close the Gap with high-fidelity virtual gyms

As seen in Table 1, below, the evolution of robotic control shows a clear trajectory, from brittle,
model-based systems, through expensive imitation learning, toward reinforcement learning
supported by simulation and domain randomization. Each step improved adaptability but left critical
gaps in data efficiency and real-world robustness. To overcome these limitations, robotics is now
moving toward differentiable and physics-informed world models.

Differentiable simulation allows gradients to propagate directly through the physics engine, which
enables robots to optimize their policies using analytical feedback rather than random sampling. This
significantly improves learning efficiency and stability.

At the same time, hybrid modeling that combines first-principle physics with machine learning
offers a way to represent phenomena that are difficult to model explicitly, such as deformable
materials, contact friction, or fluid-structure interactions. These developments promise virtual
environments where learned strategies remain valid when transferred to real hardware.

High-fidelity virtual gyms provide realistic, multi-physics environments where robots learn and
validate control strategies before deployment. They combine three core principles:

@ Physically accurate ' Scalable, %
modeling of dynamic A parallelized
interactions training

Differentiable
simulation for efficient
policy optimization

Together, these capabilities enable the development of physical Al — intelligent systems that can be
trained virtually and transferred to physical equipment with minimal recalibration.

Paradigm

Classical Control (PID,

LQR, MPC)

Model-Free Reinforce-
ment Learning

Hybrid / Differentia-
ble Simulation

Precise, determinis-
tic, stable for known
systems

Learns directly from
data; adapts to unmod-
eled dynamics

Combines physical
accuracy with efficient
optimization

Table 1. Evolution of robotic control paradigms
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Requires perfect
models; fragile under
real-world uncertainty

Extremely data-hungry;
prone to overfitting
simulator artifacts

Computationally com-
plex; still emerging
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Impact on the Sim-
ulation-to-Reality

Gap

High - fails when the
environment deviates
from assumptions

Moderate - flexible but
inconsistent in reality

Low - most promising
path toward closing the

gap



High-fidelity world models
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Figure 3. High-Fidelity simulation of HVAC system in a warehouse

To achieve this realism, hybrid solvers combine first-principle physics with data-driven residual
models tuned from real-world data. This hybridization allows the simulator to represent challenging
effects such as granular media behavior, non-linear friction, or soft-body deformation with greater
accuracy.

For multi-physics systems, co-simulation frameworks integrate specialized solvers into a unified
environment, as illustrated in Figure 4. The functional mock-up interface (FMI) standard enables
interoperability through Functional Mock-up Units (FMUs). Commercial platforms such as Ansys Twin
Builder extend FMI for strong coupling, while open-source frameworks like preCICE offer alternative
iterative schemes for robust, tightly coupled multi-physics integration.
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Figure 4. Co-Simulation and High-Fidelity Modelling Framework
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These high-fidelity frameworks generate realistic training data, exposing control policies to the same
physical subtleties they will face on the factory floor. This realism is the foundation for policies that
remain stable and transferable when deployed on real hardware.

Differentiable world models

High fidelity improves realism but can be computationally expensive for large-scale RL. Differentiable
world models, implemented in frameworks such as PyTorch and JAX, address this by allowing
gradients to flow from the policy objective through the environment. Policies can then be optimized
end-to-end with analytical gradients rather than relying only on stochastic sampling.

Within actor-critic learning, the critic leverages gradient information propagated through the
differentiable environment to provide dense, informative feedback to the actor. This improves
convergence, reduces the number of samples required, and lowers the amount of real-world fine-
tuning after simulation.

To manage computational load while preserving essential physics, AI/ML surrogates replace
expensive modules where appropriate. Options include neural ordinary differential equations
(Neural-ODEs) and physics-Informed neural networks (PINNs), which incorporate physical
structure and conservation properties, as illustrated in Figure 5, as well as reduced-order models
(ROMs) that compress CFD or FEM systems to capture dominant modes efficiently. The broader area
of physics-informed machine learning (PIML) extends these strategies toward generalizable, fast
approximations suitable for control optimization.
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Figure 5. Development of Exhaust System Flow-Thermal Analysis Using PINNs Approach

High-fidelity virtual gyms use these components with parallelized training and domain randomization
to expose policies to distributions of dynamics, sensing noise, and geometry. The result is learning
that is both physically grounded and computationally efficient, positioning policies for robust transfer
from simulation to real equipment.
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Production-ready robotics

Deploying learned policies safely and effectively in real operations requires a structured workflow that
ensures consistency between simulation and physical systems:

Assess: [dentify high-variance, high-value tasks such as bin-picking of irregular parts,
adaptive weld-seam tracking, or visual inspection. Define quantitative success metrics (cycle
time, pick success rate, defect detection accuracy).

Model: Build a high-fidelity digital twin of the work cell using CAD geometry, sensor layouts,
and material libraries reflecting real friction, mass, and compliance. The virtual gym can auto-
generate a simulated cell using validated material libraries and imported CAD/assets.

Train: Within the virtual gym, apply curriculum-based reinforcement learning across parallel
simulations. Enforce safety constraints such as joint limits, velocity caps, and exclusion zones

Validate: Run hardware-in-the-loop tests where the physical controller executes the learned
policy while telemetry is mirrored in simulation. Confirm dynamic behavior and predictive
accuracy.

Deploy: Containerize the validated policy and distribute it to edge devices. Continuous
improvement follows through over-the-air updates that refine policies fleet-wide as new data
is collected.

Effective transfer from simulation to the factory floor depends on maintaining alignment between
digital and physical domains. The key elements of this process are summarized in Table 2:

Training in Physics-In- Build generalizable High-fidelity simulation Robust policies tolerant
formed Virtual Gym control policies with differentiable sur- to unseen variance

rogates; hybrid resid-
ual modeling; domain
randomization across
physics, lighting, and

sensors
Tuning & Calibration  Align digital and real System identification Accurate virtu-
dynamics loop using telemetry al-to-physical correla-
to refine simulation tion
parameters
Safe Deployment & Minimize operational Shadow-mode opera-  Proven reliability and
Progressive Autono-  risk during rollout tion and gradual trans- safe handover

my

fer of control authority
from legacy logic to
learned policy

Table 2. Phases of effective simulation-to-reality transfer
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This integrated workflow enables a systematic, low-risk transition from simulated learning to real-
world autonomy while maintaining traceability, and it delivers tangible benefits across engineering,
operations, and safety:

Faster iteration: Engineering teams can design, validate, and refine control policies
entirely in simulation, eliminating costly physical prototypes and avoiding production
stoppages.

Resilient performance: Physics-driven training enables robots to handle production
variances, such as SKU changes, fixture misalignments, or environmental disturbances,
without manual reprogramming.

S

Higher quality: Stress-testing policies against millions of virtual edge cases
exposes and corrects failure modes before deployment, reducing scrap and
rework.

Increased safety: Hazardous tasks, such as chemical handling, high-heat operations,
@ or inspection in confined spaces, can be perfected in simulation, minimizing human

exposure and extending equipment life.

Continuous improvement: Integration with CI/CD pipelines allows over-the-air
updates to be delivered across fleets, ensuring robots learn collectively and remain
aligned with evolving operational goals.
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Take the leap:
From virtual gym to real-world physical Al
and beyond

SoftServe delivers a complete pathway for organizations ready to operationalize physical Al. Our
approach begins with the creation of high-fidelity virtual gyms tailored to each client’s specific
use case, combining physics-based simulation with accurate models of materials, sensors, and
equipment. We select and train Al surrogate models that accelerate computation while preserving
essential physical behavior within digital environments. Robots are trained inside such virtual
gyms, enabling fast and reliable control policy development and validation.

Finally, SoftServe guides the transfer to physical systems through targeted fine-tuning in real
scenarios. This closes the simulation-to-reality gap and ensures that deployed policies remain
stable, predictable, and aligned with operational goals. With this capability in place, organizations
gain scalable, adaptable automation that continues to improve throughout its lifecycle.

SoftServe stands ready to help you implement physical Al and bring robust, high-performance
robotics into real production environments. Contact us to turn virtual training into lasting
operational value.

White paper | Achieve Robotics Excellence With Physical Al and High-Fidelity Virtual Gyms


https://www.softserveinc.com/en-us/contact
https://www.softserveinc.com/en-us/contact

About US

SoftServe is a premier IT consulting and digital services provider.

We expand the horizon of new technologies to solve today's complex business
challenges and achieve meaningful outcomes for our clients.

Our boundless curiosity drives us to explore and reimagine the art

of the possible. Clients confidently rely on SoftServe to architect and

execute mature and innovative capabilities, such as digital engineering,

data and analytics, cloud, and AlI/ML, robotics and physical Al.

Our global reputation is gained from more than 30 years of experience
delivering superior digital solutions at exceptional speed by top-tier engineering
talent to enterprise industries, including high tech, financial services,
healthcare, life sciences, retail, energy, and manufacturing.

Visit our website, blog, LinkedIn, Facebook, and X (Twitter) pages

for more information.
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